Hoofd-

Suikerziekte

Cardiovasculair systeem: structuur en functie

Het menselijke cardiovasculaire systeem (bloedsomloop - een verouderde naam) is een organencomplex dat alle delen van het lichaam (op enkele uitzonderingen na) voorziet van de noodzakelijke stoffen en afvalproducten verwijdert. Het is het cardiovasculaire systeem dat alle delen van het lichaam van de nodige zuurstof voorziet en daarom de basis van het leven is. Er is geen bloedcirculatie alleen in sommige organen: de lens van het oog, haar, spijker, glazuur en dentine van de tand. In het cardiovasculaire systeem zijn er twee componenten: het complex van de bloedsomloop zelf en het lymfesysteem. Traditioneel worden ze afzonderlijk beschouwd. Maar ondanks hun verschil voeren ze een aantal gezamenlijke functies uit, en hebben ze ook een gemeenschappelijke oorsprong en een structuurplan.

Anatomie van de bloedsomloop omvat de verdeling in 3 componenten. Ze verschillen aanzienlijk in structuur, maar functioneel zijn ze een geheel. Dit zijn de volgende orgels:

Een soort pomp die bloed door de vaten pompt. Dit is een gespierd vezelig hol orgaan. Gelegen in de holte van de borst. Orgelhistologie onderscheidt verschillende weefsels. De belangrijkste en belangrijkste in grootte is gespierd. Binnen en buiten is het orgel bedekt met vezelig weefsel. De holtes van het hart worden door schotten verdeeld in 4 kamers: atria en ventrikels.

Bij een gezond persoon varieert de hartslag van 55 tot 85 slagen per minuut. Dit gebeurt gedurende het hele leven. Dus, meer dan 70 jaar, zijn er 2,6 miljard bezuinigingen. In dit geval pompt het hart ongeveer 155 miljoen liter bloed. Het gewicht van een orgaan varieert van 250 tot 350 g. De samentrekking van de hartkamers wordt systole genoemd en ontspanning wordt diastole genoemd.

Dit is een lange holle buis. Ze gaan weg van het hart en gaan herhaaldelijk naar alle delen van het lichaam. Onmiddellijk na het verlaten van zijn holtes hebben de vaten een maximale diameter, die kleiner wordt naarmate deze wordt verwijderd. Er zijn verschillende soorten schepen:

  • Slagader. Ze dragen bloed van het hart naar de periferie. De grootste is de aorta. Het verlaat de linker hartkamer en voert bloed naar alle bloedvaten behalve de longen. De takken van de aorta zijn vele malen verdeeld en dringen in alle weefsels binnen. De longslagader voert bloed naar de longen. Het komt van de rechterventrikel.
  • De vaten van de microvasculatuur. Dit zijn arteriolen, capillairen en venulen - de kleinste bloedvaten. Bloed door de arteriolen zit in de dikte van de weefsels van de interne organen en huid. Ze vertakken zich in haarvaten die gassen en andere stoffen uitwisselen. Daarna wordt het bloed in de venules verzameld en stroomt verder.
  • Aders zijn bloedvaten die het bloed naar het hart vervoeren. Ze worden gevormd door de diameter van de venulen en hun meervoudige versmelting te vergroten. De grootste vaten van dit type zijn de onderste en bovenste holle aderen. Ze vloeien direct in het hart.

Het eigenaardige weefsel van het lichaam, vloeistof, bestaat uit twee hoofdcomponenten:

Plasma is het vloeibare deel van het bloed waarin alle gevormde elementen zich bevinden. Het percentage is 1: 1. Plasma is een troebele geelachtige vloeistof. Het bevat een groot aantal eiwitmoleculen, koolhydraten, lipiden, verschillende organische verbindingen en elektrolyten.

Bloedcellen omvatten: erytrocyten, leukocyten en bloedplaatjes. Ze worden gevormd in het rode beenmerg en circuleren door de bloedvaten gedurende iemands leven. Alleen leukocyten in bepaalde omstandigheden (ontsteking, de introductie van een vreemd organisme of stof) kunnen door de vaatwand in de extracellulaire ruimte passeren.

Een volwassene bevat 2,5 - 7,5 (afhankelijk van de massa) ml bloed. De pasgeborene - van 200 tot 450 ml. Schepen en het werk van het hart vormen de belangrijkste indicator van de bloedsomloop - bloeddruk. Het varieert van 90 mm Hg. tot 139 mm Hg voor systolische en 60-90 - voor diastolische.

Alle vaten vormen twee gesloten cirkels: groot en klein. Dit zorgt voor een ononderbroken gelijktijdige toevoer van zuurstof naar het lichaam, evenals gasuitwisseling in de longen. Elke bloedsomloop begint vanuit het hart en eindigt daar.

Klein gaat van het rechterventrikel via de longslagader naar de longen. Hier vertakt het verschillende keren. Bloedvaten vormen een dicht capillair netwerk rond alle bronchiën en longblaasjes. Via hen is er een gasuitwisseling. Bloed, rijk aan koolstofdioxide, geeft het aan de holte van de longblaasjes en krijgt daarvoor zuurstof. Daarna worden de haarvaten achtereenvolgens in twee aders samengevoegd en gaan ze naar het linker atrium. De longcirculatie eindigt. Het bloed gaat naar de linker hartkamer.

De grote cirkel van bloedcirculatie begint vanuit een linkerventrikel. Tijdens de systole gaat het bloed naar de aorta, van waaruit vele bloedvaten (slagaders) aftakken. Ze zijn verschillende keren verdeeld totdat ze in haarvaten veranderen die het hele lichaam van bloed voorzien - van de huid naar het zenuwstelsel. Hier is de uitwisseling van gassen en voedingsstoffen. Waarna het bloed opeenvolgend wordt verzameld in twee grote aderen, het rechter atrium bereiken. De grote cirkel eindigt. Het bloed uit het rechteratrium komt in de linker hartkamer en alles begint opnieuw.

Het cardiovasculaire systeem vervult een aantal belangrijke functies in het lichaam:

  • Voeding en zuurstoftoevoer.
  • Behoud van homeostase (constantheid van aandoeningen binnen het hele organisme).
  • Bescherming.

De toevoer van zuurstof en voedingsstoffen is als volgt: bloed en bestanddelen (rode bloedcellen, eiwitten en plasma) leveren zuurstof, koolhydraten, vetten, vitamines en sporenelementen aan elke cel. Tegelijkertijd nemen ze er koolstofdioxide en gevaarlijk afval uit (afvalproducten).

Permanente toestanden in het lichaam worden geleverd door het bloed zelf en zijn componenten (erytrocyten, plasma en eiwitten). Ze fungeren niet alleen als dragers, maar reguleren ook de belangrijkste indicatoren van homeostase: ph, lichaamstemperatuur, vochtigheidsniveau, hoeveelheid water in de cellen en de intercellulaire ruimte.

Lymfocyten spelen een directe beschermende rol. Deze cellen kunnen vreemd materiaal neutraliseren en vernietigen (micro-organismen en organische stof). Het cardiovasculaire systeem zorgt voor een snelle levering aan elke hoek van het lichaam.

Tijdens intra-uteriene ontwikkeling heeft het cardiovasculaire systeem een ​​aantal kenmerken.

  • Er wordt een bericht tussen de atria ingesteld ("ovaal venster"). Het zorgt voor een directe overdracht van bloed tussen hen.
  • De longcirculatie functioneert niet.
  • Het bloed uit de longader passeert de aorta via een speciaal open kanaal (kanaal Batalov).

Het bloed is verrijkt met zuurstof en voedingsstoffen in de placenta. Vanaf daar gaat het via de navelstrengader in de buikholte door de opening met dezelfde naam. Vervolgens stroomt het vat in de leverader. Vanwaar het bloed door het orgel stroomt, komt het in de lagere vena cava terecht, stroomt het naar het rechter atrium. Vanaf daar gaat bijna al het bloed naar links. Slechts een klein deel ervan wordt in de rechterventrikel gegooid en vervolgens in de longader. Orgaanbloed wordt verzameld in de navelstrengslagaders die naar de placenta gaan. Hier is het weer verrijkt met zuurstof, ontvangt voedingsstoffen. Tegelijkertijd gaan koolstofdioxide en metabolische producten van de baby over in het bloed van de moeder, het organisme dat ze verwijdert.

Het cardiovasculaire systeem bij kinderen na de geboorte ondergaat een reeks veranderingen. Batalov kanaal en ovaal gat zijn overgroeid. De navelstrengvaten worden leeg en veranderen in een rond ligament van de lever. De longcirculatie begint te functioneren. Met 5-7 dagen (maximaal - 14) verwerft het cardiovasculaire systeem de kenmerken die gedurende het hele leven in een persoon blijven bestaan. Alleen de hoeveelheid circulerend bloed verandert op verschillende tijdstippen. In het begin neemt het toe en bereikt het zijn maximum op de leeftijd van 25-27. Pas na 40 jaar begint het bloedvolume licht te dalen en blijft het na 60-65 jaar binnen 6-7% van het lichaamsgewicht.

In sommige perioden van leven neemt de hoeveelheid circulerend bloed tijdelijk toe of af. Dus tijdens de zwangerschap wordt het plasmavolume met 10% meer dan het origineel. Na de bevalling neemt het binnen 3-4 weken af ​​naar de norm. Tijdens vasten en onvoorziene fysieke inspanning wordt de hoeveelheid plasma met 5-7% verminderd.

Waaruit bestaat het menselijke cardiovasculaire systeem en hoe

De structuur en functie van het cardiovasculaire systeem, dat zorgt voor bloed- en lymfecirculatie door het hele lichaam, is een afzonderlijk deel van de anatomie. Dit is het belangrijkste systeem in het lichaam, dat is gebaseerd op een complex complex van aderen, bloedvaten, haarvaten, slagaders en aorta.

Dit artikel is gewijd aan de werking van het cardiovasculaire systeem en aan de belangrijkste onderdelen ervan. Je leert over de functie van aders, slagaders en vele andere nuttige informatie.

De structuur en het werk van het menselijk cardiovasculair systeem (met foto)

De vitale activiteit van het lichaam is alleen mogelijk als de levering van voedingsstoffen, zuurstof, water aan elke cel en de verwijdering van metabolische producten die door de cel worden uitgescheiden. Deze taak wordt uitgevoerd door het cardiovasculaire systeem, een systeem van buizen die bloed en lymfe bevatten, en het hart, het centrale orgaan dat verantwoordelijk is voor de beweging van deze vloeistof.

Het hart en de bloedvaten in de structuur van het cardiovasculaire systeem vormen een gesloten complex waardoor het bloed beweegt als gevolg van samentrekkingen van de hartspier en gladde spiercellen van de vaatwanden. Bloedvaten: bloedvaten die bloed uit het hart vervoeren, aderen waardoorheen bloed stroomt naar het hart, en een microvasculatuur bestaande uit arteriolen, haarvaten en venulen.

Bloedvaten zijn alleen afwezig in de epitheliale bekleding van de huid en slijmvliezen, in het haar, nagels, het hoornvlies van de ogen en gewrichtskraakbeen.

Alle bloedvaten, behalve de long, dragen bloed verrijkt met zuurstof. De wand van de ader bestaat uit drie membranen: de binnen-, midden- en buitenkant. De middelste schede van de ader is rijk aan spiraalvormig gerangschikte gladde spiercellen, die samentrekken en ontspannen onder invloed van het zenuwstelsel.

Het distale deel van de algemene structuur van het cardiovasculaire systeem - het microcirculatoire bed - is het pad van de lokale bloedstroom, waar de interactie van bloed en weefsels is verzekerd. Het microcirculatiebed begint met het kleinste arteriële vat, de arteriole, en eindigt met een venule. Van de arteriolen zijn er veel haarvaten die de doorbloeding reguleren. De haarvaatjes stromen in de kleinste aderen (venules) die in de aderen stromen.

De belangrijkste afdeling van de structuur van het menselijke cardiovasculaire systeem is de haarvaten, zij voeren het metabolisme en de gasuitwisseling uit. Het totale uitwisselingsoppervlak van de haarvaten van een volwassene bedraagt ​​1000 m2.

Ook bestaat het cardiovasculaire systeem uit aders, die alle, behalve de long, bloed van het hart dragen, dat arm is aan zuurstof en verrijkt is met koolstofdioxide. De aderwand bestaat ook uit drie schalen, vergelijkbaar met de lagen van de slagaderwand.

Let op de foto: in het cardiovasculaire systeem op de binnenste schil van het grootste deel van het midden en sommige grote aderen zijn er kleppen waarmee bloed alleen in de richting naar het hart kan stromen, waardoor terugvloeiing van bloed in de aderen wordt voorkomen en daardoor het hart wordt beschermd tegen onnodig energieverbruik bloed komt constant in de aderen voor. De aders van de bovenste helft van het lichaam hebben geen kleppen. Het totale aantal aderen is groter dan de bloedvaten en de totale grootte van het veneuze bed overschrijdt de grootte van de slagader. Bloedstroom in de aderen is lager dan in de slagaders, in de aderen van het lichaam en de onderste ledematen, bloed stroomt tegen de zwaartekracht in.

Verder wordt in een toegankelijke presentatie informatie gegeven over de structuur en de werking van het cardiovasculaire systeem in het algemeen en zijn componenten in het bijzonder.

Functies en structurele kenmerken van de kleine, grote en hartcirkels van de bloedcirculatie

Het cardiovasculaire systeem verenigt het hart en de bloedvaten en vormt twee cirkels van circulatie - groot en klein. Schematisch gezien is de structuur van de kleine en grote cirkel van bloedcirculatie als volgt. Bloed stroomt vanuit de aorta, waarbij de druk hoog is (gemiddeld 100 mmHg), door de haarvaten, waar de druk erg laag is (15-25 mmHg. Art.), Door het systeem van vaten, waarin de druk progressief afneemt. Van de haarvaten komt bloed in de venulen (druk 12-15 mm Hg), vervolgens in de aderen (druk 3-5 mm Hg). In de holle aderen, waardoor veneus bloed in het rechter atrium stroomt, is de druk 1-3 mm Hg. Kunst. En in het atrium - ongeveer 0 mm Hg. Art. Dienovereenkomstig neemt de bloedstroomsnelheid af van 50 cm / s in de aorta tot 0,07 cm / s in de capillairen en venules. Bij de mens zijn grote en kleine cirkels van de bloedcirculatie verdeeld.

Maak uzelf vertrouwd met de structuur van de cirkels van de bloedcirculatie en hun functies in het menselijk lichaam.

De kleine of longcirculatie is een systeem van bloedvaten die beginnen in de rechterventrikel van het hart, van waaruit zuurstofarm bloed in de longstam terechtkomt, dat zich splitst in de rechter en linker longslagaders; de laatstgenoemden, beurtelings, tak in de longen, respectievelijk, de vertakking van de bronchiën, in de slagaders, overgaand in de haarvaten. Aanzienlijke waarde in een structuur van een kleine cirkel van bloedcirculatie wordt gespeeld door capillaire netwerken. In capillaire netten die alveoli verweven, geeft bloed koolstofdioxide af en is het verrijkt met zuurstof. Arterieel bloed stroomt van de haarvaten in de aderen, die worden vergroot en twee aan elke zijde stromen naar het linker atrium, waar de kleine cirkel van bloedcirculatie eindigt.

De grote of lichamelijke bloedsomloop dient om voedingsstoffen en zuurstof te leveren aan alle organen en weefsels van het lichaam. De structuur van de systemische circulatie begint in de linkerventrikel van het hart, waar arterieel bloed uit het linkeratrium stroomt. De aorta strekt zich uit van de linker hartkamer, van waaruit slagaders vertrekken, alle organen en weefsels van het lichaam bereiken en zich vertakken in hun dikte tot arteriolen en haarvaten; de laatste gaan over in de venulen en verder in de aderen. Door de wanden van de haarvaten, vindt metabolisme en gasuitwisseling tussen het bloed en lichaamsweefsels plaats. Het slagaderlijke bloed dat in de haarvaten stroomt, geeft voedingsstoffen en zuurstof af en ontvangt metabolische producten en koolstofdioxide. De aders komen samen in twee grote stammen - de bovenste en onderste holle aderen, die uitmonden in het rechter atrium, waar de grote cirkel van bloedcirculatie eindigt.

Een belangrijke functie in de bloedsomloop wordt gespeeld door de derde, of hartcirkel, die het hart zelf dient. Het begint met de kransslagaders van het hart die uit de aorta komen en eindigt met de aderen van het hart. De laatste komen samen in de coronaire sinus, die uitmondt in het rechter atrium. De aorta van de hartcirculatie begint met de uitzetting - de aortabol, waarvan de rechter en linker kransslagader zich uitstrekken. De lamp gaat naar het opgaande deel van de aorta. Naar links buigend, passeert de aortaboog het aflopende deel van de aorta. Van de concave zijde van de aortaboog strekken takken zich uit naar de trachea, bronchiën en thymus; drie grote schepen vertrekken van de convexe kant van de boog: rechts is het hoofd van de arm, links de linker halsslagader en de linker subclavia-slagaders. De brachiocephalische stam is verdeeld in de rechter gemeenschappelijke halsslagader en subclavia-slagaders.

Het menselijke slagadersysteem: structurele kenmerken en basisfuncties

Kenmerken van de structuur van de slagaders in het menselijk lichaam en hun functies zijn als volgt.

De gemeenschappelijke halsslagader (rechts en links) gaat omhoog naast de luchtpijp en de slokdarm, deze verdeelt zich in de externe halsslagader die uit de schedelholte vertakt, en de interne halsslagader, die in de schedel gaat en naar de hersenen gaat. De externe halsslagader levert bloed aan de uitwendige delen en organen van het hoofd en de nek. De interne halsslagader komt de schedelholte binnen, waar het verdeeld is in een aantal takken die de hersenen en het orgel van het zicht voorzien. Ook in de menselijke slagadersysteem omvat de subclaviale slagader en zijn takken, die het cervicale ruggenmerg voorzien van zijn membranen en de hersenen, een deel van de spieren van de achterkant van het hoofd, rug en schouder, diafragma, borstklier, strottenhoofd, luchtpijp, slokdarm, schildklier en thymus. De subclaviale slagader in het axillaire gebied passeert in de axillaire slagader, die het bovenste lidmaat levert.

Sprekend over de functies en structuur van de slagaders, moet worden opgemerkt dat het dalende deel van de aorta is verdeeld in de borstkas en de buik. Het thoracale deel van de aorta bevindt zich asymmetrisch op de wervelkolom, links van de mediane lijn, en levert bloed aan de interne organen die zich in de borstholte en de wanden bevinden. Vanuit de thoracale holte passeert de aorta de buikholte door de aorta-opening van het diafragma. Op het niveau van de IV lendewervel is de aorta verdeeld in twee gemeenschappelijke iliacale slagaders. De belangrijkste functie die de slagaders van de abdominale aorta uitoefenen, is de bloedtoevoer naar de buikader en de buikwand.

Hoe de iliacale slagaders eruit zien en functioneren

De gemeenschappelijke iliacale slagader is de grootste menselijke slagader (met uitzondering van de aorta). Na enige afstand onder een scherpe hoek met elkaar te hebben doorgebracht, is elk van hen verdeeld in twee slagaders: de interne iliacale slagader en de externe iliacale slagader.

De interne iliacale slagader voedt het bekken, de spieren en de binnenkant, in het bekken.

De externe iliacale slagader levert de spieren van de dij, het scrotum bij mannen, de schaamstreek bij vrouwen en de grote schaamlippen. De hoofdfunctie van de femorale slagader, die een directe voortzetting is van de uitwendige slagader van het slagbeen, is de bloedtoevoer naar de dij, dijspieren en uitwendige geslachtsorganen. De popliteale slagader is een voortzetting van de dijbeen, het levert bloed aan het onderbeen en de voet.

De foto laat zien hoe de iliacale slagaders eruit zien - intern en extern:

Structuur en hoofdfuncties van de aders in de bloedsomloop

Nu kwam de beurt om te praten over de functies en structuur van de aderen in het menselijk lichaam. De aderen van de systemische circulatie zijn verdeeld in drie systemen: het systeem van de superieure vena cava; het systeem van de inferieure vena cava, inclusief de portale poortader van de lever; het systeem van de aderen van het hart, die de coronaire sinus van het hart vormen. De hoofdstam van elk van deze aderen opent met een onafhankelijke opening in de holte van het rechteratrium. De aders van het systeem van de bovenste en onderste holle aderen zijn met elkaar verbonden. De belangrijkste functies van de aderen - bloedafname: de bovenste vena cava verzamelt bloed uit de bovenste helft van het lichaam, het hoofd, de nek, de bovenste ledematen en de borstholte; De inferieure vena cava verzamelt bloed uit de onderste ledematen, wanden en ingewanden van het bekken en de buik.

De belangrijkste functie van de poortader in de bloedtoevoer is om bloed te verzamelen van ongepaarde buikorganen: milt, pancreas, omentum, galblaas en andere organen van het spijsverteringskanaal. In tegenstelling tot alle andere aderen splitst de poortader, die de poorten van de lever is binnengegaan, opnieuw in kleinere en kleinere takken, tot aan de sinusoïdale haarvaten van de lever, die in de centrale ader in de lobule stromen. Vanuit de centrale leverader stromen in de inferieure vena cava.

In het menselijk lichaam hebben alle bloedvaten een totale lengte van 100.000 km. Dit is genoeg om de aarde 2,2 keer te winden. Bloed reist door het hele lichaam, beginnend vanaf de ene kant van het hart en aan het einde van een volledige cirkel terugkerend naar de andere. Op een dag passeert het bloed 270 370 km. Als de bloedsomloop van een gewoon persoon in een rechte lijn ligt, dan is de lengte meer dan 95.000 km.

Menselijk cardiovasculair systeem

De structuur van het cardiovasculaire systeem en zijn functies zijn de belangrijkste kennis die een personal trainer nodig heeft om een ​​competent trainingsproces voor de afdelingen op te bouwen, gebaseerd op de ladingen die voldoen aan hun niveau van voorbereiding. Alvorens verder te gaan met de constructie van trainingsprogramma's, is het noodzakelijk om het principe van de werking van dit systeem te begrijpen, hoe bloed door het lichaam wordt gepompt, hoe het gebeurt en wat de doorvoer van zijn bloedvaten beïnvloedt.

introductie

Het cardiovasculaire systeem is nodig voor het lichaam om voedingsstoffen en componenten over te brengen, en om metabolische producten uit weefsels te elimineren, om de constantheid van de interne omgeving van het lichaam te behouden, optimaal voor zijn werking. Het hart is het hoofdbestanddeel, dat fungeert als een pomp die bloed door het lichaam pompt. Tegelijkertijd is het hart slechts een deel van het hele bloedsomloopstelsel van het lichaam, dat eerst het bloed van het hart naar de organen drijft, en vervolgens van hen terug naar het hart. We zullen ook afzonderlijk de arteriële en afzonderlijk veneuze systemen van de menselijke bloedcirculatie beschouwen.

Structuur en functies van het menselijk hart

Het hart is een soort pomp die bestaat uit twee ventrikels, die onderling verbonden zijn en tegelijkertijd onafhankelijk van elkaar zijn. De rechterventrikel drijft bloed door de longen, het linker ventrikel drijft het door de rest van het lichaam. Elke helft van het hart heeft twee kamers: het atrium en het ventrikel. Je kunt ze in de afbeelding hieronder zien. De rechter en linker boezem werken als reservoirs waaruit bloed direct in de kamers binnenkomt. Op het moment dat het hart samentrekt, duwen beide ventrikels het bloed naar buiten en drijven het de long- en perifere bloedvaten door.

De structuur van het menselijk hart: 1-longstam; 2-kleppen pulmonale arterie; 3-superieure vena cava; 4-rechter longslagader; 5-rechter longader; 6-rechts atrium; 7-tricuspid klep; 8e rechter ventrikel; 9-lagere vena cava; 10-dalende aorta; 11e aortaboog; 12-linker longslagader; 13-linker longader; 14 links atrium; 15-aortaklep; 16-mitralisklep; 17-linkerventrikel; 18-interventriculair septum.

Structuur en functie van de bloedsomloop

De bloedsomloop van het hele lichaam, zowel het centrale (hart en longen) als de perifere (de rest van het lichaam) vormt een volledig gesloten systeem, verdeeld in twee circuits. Het eerste circuit drijft bloed uit het hart en wordt het arteriële circulatiesysteem genoemd, het tweede circuit retourneert bloed naar het hart en wordt het veneuze circulatiesysteem genoemd. Het bloed dat van de periferie naar het hart terugkeert bereikt aanvankelijk het rechter atrium door de superieure en inferieure vena cava. Vanuit het rechteratrium stroomt het bloed in de rechterkamer en via de longslagader gaat het naar de longen. Nadat zuurstof in de longen is uitgewisseld met koolstofdioxide, keert het bloed via de longaderen terug naar het hart, eerst in het linker atrium, vervolgens in de linker hartkamer en dan alleen nieuw in het arteriële bloedtoevoersysteem.

De structuur van de menselijke bloedsomloop: 1-superior vena cava; 2-schepen gaan naar de longen; 3 de aorta; 4-lagere vena cava; 5-hepatische ader; 6-poortader; 7-longader; 8-superieure vena cava; 9-lagere vena cava; 10-schepen van interne organen; 11-schepen van de ledematen; 12-schepen van het hoofd; 13-longslagader; 14e hart.

I-kleine bloedsomloop; II-grote cirkel van bloedcirculatie; III-schepen gaan naar het hoofd en de handen; IV-schepen gaan naar de interne organen; V-schepen gaan naar de voeten

Structuur en functie van het menselijke arteriële systeem

De functies van de slagaders zijn het transporteren van bloed, dat door het hart wordt vrijgegeven wanneer het samentrekt. Omdat de vrijlating hiervan plaatsvindt onder vrij hoge druk, zorgde de natuur ervoor dat de slagaders sterke en elastische spierwanden hadden. Kleinere slagaders, arteriolen genaamd, zijn ontworpen om de bloedcirculatie te beheersen en fungeren als bloedvaten waardoor bloed direct het weefsel binnendringt. Arteriolen zijn van cruciaal belang bij de regeling van de bloedstroom in de haarvaten. Ze worden ook beschermd door elastische spierwanden, die de vaten in staat stellen om, indien nodig, hun lumen te bedekken of deze aanzienlijk uit te breiden. Dit maakt het mogelijk om de bloedcirculatie in het capillair systeem te veranderen en te regelen, afhankelijk van de behoeften van specifieke weefsels.

De structuur van het menselijke arteriële systeem: 1-brachiocefalische stam; 2-subclaviale slagader; 3-aortaboog; 4-axillaire slagader; 5e inwendige borstslagader; 6-dalende aorta; 7-inwendige thoraxslagader; 8e diepe arteria brachialis; 9-stralen terugkeer slagader; 10-bovenste epigastrische slagader; 11-dalende aorta; 12-lagere epigastrische slagader; 13-interossale slagaders; 14-stralen slagader; 15 ulnareus; 16 palmar arc; 17-achter carpale boog; 18 palmar bogen; Slagaders met 19 vingers; 20-dalende tak van de envelop van de slagader; 21-dalende knierslagader; 22-superior knierslagaders; 23 onderste knierslagaders; 24 peroneale slagader; 25 posterieure tibiale slagader; 26-grote tibiale slagader; 27 peroneale slagader; 28 arteriële voetboog; 29-metatarsale slagader; 30 voorste hersenslagader; 31 middelste hersenslagader; 32 posterior cerebrale slagader; 33 basilaire slagader; 34-uitwendige halsslagader; 35-interne halsslagader; 36 vertebrale slagaders; 37 gewone halsslagaders; 38 longader; 39 hart; 40 intercostale slagaders; 41 coeliakiepop; 42 maag-slagaders; 43-milt slagader; 44-gewone leverslagader; 45-superior mesenteriale slagader; 46-renale slagader; 47 -ferrière mesenteriale slagader; 48 interne zaadader; 49-gemeenschappelijke iliacale slagader; 50e interne iliacale slagader; 51-externe iliacale slagader; 52 envelop-aderen; 53-gemeenschappelijke femorale slagader; 54 doordringende takken; 55e diepe femorale slagader; 56-oppervlakkige femorale slagader; 57-popliteale slagader; 58-dorsale metatarsale slagaders; 59-dorsale slagaders.

Structuur en functie van het menselijke veneuze systeem

Het doel van venulen en aderen is om bloed door hun naar het hart terug te brengen. Van de kleine haarvaatjes komt het bloed in de kleine venules en van daaruit in de grotere aderen. Omdat de druk in het veneuze systeem veel lager is dan in het arteriële stelsel, zijn de wanden van de vaten hier veel dunner. De wanden van de aders zijn echter ook omgeven door elastisch spierweefsel, dat, door analogie met de slagaders, hen in staat stelt om ofwel sterk te versmallen, het lumen volledig te blokkeren, of sterk uit te zetten, in een dergelijk geval als een reservoir voor bloed. Een kenmerk van sommige aderen, bijvoorbeeld in de onderste ledematen, is de aanwezigheid van eenrichtingskleppen, met als taak de normale terugkeer van bloed naar het hart te garanderen, waardoor de uitstroming ervan onder invloed van de zwaartekracht wordt voorkomen wanneer het lichaam rechtop staat.

De structuur van het menselijke veneuze systeem: 1-subclavia ader; 2-interne borstader; 3-axillaire ader; 4-laterale ader van de arm; 5-brachiale aderen; 6-intercostale aderen; 7e mediale ader van de arm; 8 mediaan ulnaire ader; 9-sternum ader; 10-laterale ader van de arm; 11 cubital ader; 12-mediale ader van de onderarm; 13 onderste ventrikelader; 14 diepe boogboog; Palmarboog met 15 oppervlakten; 16 palmaire vingeraders; 17 sigmoid sinus; 18-uitwendige halsader; 19 interne halsader; 20-lagere schildklierader; 21 longslagaders; 22 hart; 23 inferieure vena cava; 24 leveraders; 25-renale aderen; 26-ventrale vena cava; 27 zaadader; 28 gemeenschappelijke iliacale ader; 29 doordringende takken; 30-externe darmbeenader; 31 interne iliacale ader; 32-uitwendige genitale ader; 33-diepe dijader; 34-grote beenader; 35e femorale ader; 36-plus beenader; 37 bovenste knie aderen; 38 knieholte; 39 lagere knie aderen; 40-grote beenader; 41-benen ader; 42-anterieure / posterieure tibiale ader; 43 diepe plantaire ader; 44-rug veneuze boog; 45-dorsale metacarpale aderen.

Structuur en functie van het systeem van kleine haarvaten

De functies van de haarvaten zijn om de uitwisseling van zuurstof, vloeistoffen, verschillende voedingsstoffen, elektrolyten, hormonen en andere vitale componenten tussen het bloed en lichaamsweefsel te realiseren. De toevoer van voedingsstoffen naar de weefsels is te wijten aan het feit dat de wanden van deze vaten een zeer kleine dikte hebben. Dunne wanden zorgen ervoor dat voedingsstoffen in de weefsels kunnen doordringen en ze van alle benodigde componenten kunnen voorzien.

De structuur van microcirculatievaten: 1-arterie; 2 arteriolen; 3-ader; 4-venulen; 5 haarvaten; 6-cellen weefsel

Het werk van de bloedsomloop

De beweging van bloed door het lichaam hangt af van de capaciteit van de bloedvaten, meer bepaald van hun weerstand. Hoe lager deze weerstand, hoe sterker de bloedstroom toeneemt, hoe hoger de weerstand, hoe zwakker de bloedstroom. Op zich is de weerstand afhankelijk van de grootte van het lumen van de bloedvaten van de slagaderlijke bloedsomloop. De totale weerstand van alle bloedvaten in de bloedsomloop wordt de totale perifere weerstand genoemd. Als er in korte tijd in het lichaam een ​​vermindering van het lumen van de vaten optreedt, neemt de totale perifere weerstand toe, en met de uitzetting van het lumen van de vaten neemt deze af.

Zowel de uitzetting als de samentrekking van de bloedvaten van de gehele bloedsomloop vindt plaats onder invloed van veel verschillende factoren, zoals de intensiteit van de training, het niveau van stimulatie van het zenuwstelsel, de activiteit van metabolische processen in specifieke spiergroepen, het verloop van warmtewisselingsprocessen met de externe omgeving en niet alleen. Tijdens het trainen leidt stimulatie van het zenuwstelsel tot verwijding van bloedvaten en verhoogde bloedstroom. Tegelijkertijd is de belangrijkste toename van de bloedcirculatie in de spieren voornamelijk het gevolg van de stroom van metabole en elektrolytische reacties in spierweefsel onder invloed van zowel aërobe als anaërobe oefeningen. Dit omvat een toename van de lichaamstemperatuur en een toename van de koolstofdioxideconcentratie. Al deze factoren dragen bij aan de uitbreiding van bloedvaten.

Tegelijkertijd neemt de bloedstroom in andere organen en delen van het lichaam die niet betrokken zijn bij het uitvoeren van fysieke activiteit af als gevolg van de samentrekking van arteriolen. Deze factor, samen met de vernauwing van de grote vaten van het veneuze circulatiesysteem, draagt ​​bij aan een toename van het bloedvolume, dat betrokken is bij de bloedtoevoer van de spieren die bij het werk betrokken zijn. Hetzelfde effect wordt waargenomen tijdens het uitvoeren van vermogensbelastingen met kleine gewichten, maar met een groot aantal herhalingen. De reactie van het lichaam in dit geval kan worden gelijkgesteld aan aërobe oefening. Tegelijkertijd neemt bij krachttraining met grote gewichten de weerstand tegen de bloedstroom in de werkende spieren toe.

conclusie

We hebben de structuur en functie van de menselijke bloedsomloop bekeken. Zoals het ons nu duidelijk is geworden, is het nodig bloed door het lichaam te pompen door het hart. Het arteriële systeem drijft bloed uit het hart, het veneuze systeem geeft bloed terug naar het hart. In termen van fysieke activiteit, kunt u het als volgt samenvatten. De bloedstroom in de bloedsomloop is afhankelijk van de mate van weerstand van de bloedvaten. Wanneer de weerstand van de vaten afneemt, neemt de bloedstroom toe, en met toenemende weerstand neemt deze af. De vermindering of expansie van bloedvaten, die de mate van resistentie bepalen, hangt af van factoren zoals het soort oefening, de reactie van het zenuwstelsel en het verloop van de metabole processen.

Cardiovasculair systeem: de geheimen en geheimen van de menselijke "motor"

Het menselijk lichaam is een complex en ordelijk biologisch systeem, dat de eerste stap is in de evolutie van de organische wereld onder de bewoners van het Universum die voor ons toegankelijk zijn. Alle interne organen van dit systeem werken goed en soepel en zorgen voor het onderhoud van vitale functies en de constantheid van de interne omgeving.

En hoe werkt het cardiovasculaire systeem, welke belangrijke functies presteert het in het menselijk lichaam en welke geheimen heeft het? Je kunt haar beter leren kennen in onze gedetailleerde recensie en video in dit artikel.

Een beetje anatomie: wat gaat er in het cardiovasculaire systeem

Het cardiovasculaire systeem (SSS), of het circulatiesysteem - is een complex multifunctioneel element van het menselijk lichaam, bestaande uit het hart en de bloedvaten (slagaders, aders, haarvaten).

Dit is interessant. Een gemeenschappelijk vasculair netwerk doordringt elke vierkante millimeter van het menselijk lichaam, en verschaft voeding en oxygenatie van alle cellen. De totale lengte van de slagaders, arteriolen, aders en haarvaten in het lichaam is meer dan honderdduizend kilometer.

De structuur van alle elementen van de CCC is anders en hangt af van de uitgevoerde functies. De anatomie van het cardiovasculaire systeem wordt hieronder in meer detail besproken.

Het hart

Het hart (Griekse cardia, Lat. Cor.) Is een hol spierorgaan dat bloed door de vaten pompt door een bepaalde reeks ritmische samentrekkingen en relaxaties. De activiteit wordt veroorzaakt door constante zenuwimpulsen afkomstig van de medulla.

Bovendien heeft het lichaam een ​​automatisme - het vermogen om te samentrekken onder de actie van impulsen die daarin zijn gevormd. De in de sinusknoop gegenereerde excitatie wordt verdeeld naar het myocardiale weefsel, waardoor spontane spiercontracties ontstaan.

Let op! Het volume orgaanholten bij een volwassen persoon is gemiddeld 0,5-0,7 l en de massa is niet groter dan 0,4% van het totale lichaamsgewicht.

De wanden van het hart bestaan ​​uit drie bladen:

  • het endocardium dat het hart van binnenuit bekleedt en het klepapparaat CCC vormt;
  • myocardium - de spierlaag, die samentrekking van de hartkamers veroorzaakt;
  • epicard - buitenste omhulsel, verbonden met het pericardium - pericardiale zak.

In de anatomische structuur van het lichaam worden 4 geïsoleerde kamers onderscheiden - 2 ventrikels en twee atria, die met elkaar zijn verbonden door middel van een kleppensysteem.

In het linker atrium in vier gelijke diameter longaders komt bloed verzadigd met zuurstofmoleculen uit de longcirculatie. In diastole (ontspanningsfase) door de open mitralisklep dringt het in de linker hartkamer binnen. Vervolgens wordt tijdens de systole bloed krachtig vrijgegeven in de aorta, de grootste arteriële stam in het menselijk lichaam.

Het rechter atrium verzamelt "gerecycled" bloed dat de minimale hoeveelheid zuurstof en het maximum - koolstofdioxide bevat. Het komt van het bovenste en onderste lichaam langs dezelfde holle aderen - v. cava superior en v. cava interieur.

Vervolgens passeert het bloed de tricuspidalisklep en komt het de holte van de rechterkamer binnen, van waar het wordt getransporteerd door de longstam naar het pulmonale arteriële netwerk om O2 te verrijken en overtollig CO2 kwijt te raken. Zo zijn de linker delen van het hart gevuld met geoxygeneerd arterieel bloed en de juiste delen - veneus.

Let op! De beginselen van de hartspier worden zelfs bij de eenvoudigste chordaten bepaald in de vorm van de expansie van de grote vaten. In het proces van evolutie ontwikkelde en kreeg het orgel een steeds perfectere structuur. Bijvoorbeeld, het hart van een vis is tweekamer, in amfibieën en reptielen - een driekamer, en bij vogels en alle zoogdieren, zoals bij mensen, een vierkamer.

De samentrekking van de hartspier ritmisch en normaal is 60-80 slagen per minuut. Tegelijkertijd is er een zekere tijdsafhankelijkheid:

  • de duur van atriale spiercontractie is 0,1 s;
  • de ventrikels spannen zich gedurende 0,3 sec aan;
  • pauzeduur - 0,4 s.

Auscultatie in het werk van het hart onderscheidt twee tonen. Hun belangrijkste kenmerken worden weergegeven in de onderstaande tabel.

Cardiovasculair systeem van het menselijk lichaam: structurele kenmerken en functies

Het cardiovasculaire systeem van een persoon is zo complex dat slechts een schematische beschrijving van de functionele kenmerken van alle componenten een onderwerp is voor verschillende wetenschappelijke verhandelingen. Dit materiaal biedt beknopte informatie over de structuur en functies van het menselijk hart, en geeft de gelegenheid een algemeen beeld te krijgen van hoe onmisbaar dit lichaam is.

Fysiologie en anatomie van het menselijk cardiovasculair systeem

Anatomisch gezien bestaat het menselijke cardiovasculaire systeem uit het hart, slagaders, haarvaten, aders en heeft het drie hoofdfuncties:

  • transport van voedingsstoffen, gassen, hormonen en metabole producten van en naar cellen;
  • regulering van de lichaamstemperatuur;
  • bescherming tegen binnendringende micro-organismen en buitenaardse cellen.

Deze functies van het menselijke cardiovasculaire systeem worden rechtstreeks uitgevoerd door de vloeistoffen die in het systeem circuleren - bloed en lymfe. (Lymfe is een heldere, waterige vloeistof die witte bloedcellen bevat en zich bevindt in lymfevaten.)

De fysiologie van het menselijke cardiovasculaire systeem wordt gevormd door twee gerelateerde structuren:

  • De eerste structuur van het menselijke cardiovasculaire systeem omvat: het hart, slagaders, haarvaten en aders, die zorgen voor een gesloten bloedcirculatie.
  • De tweede structuur van het cardiovasculaire systeem bestaat uit: een netwerk van capillairen en kanalen die in het veneuze systeem stromen.

De structuur, het werk en de functie van het menselijk hart

Het hart is een spierorgaan dat via een systeem van holtes (kamers) en kleppen bloed injecteert in een distributienetwerk, het circulatiesysteem.

Post een verhaal over de structuur en het werk van het hart zou moeten zijn met de definitie van de locatie. Bij de mens bevindt het hart zich dichtbij het midden van de borstholte. Het bestaat voornamelijk uit duurzaam elastisch weefsel - de hartspier (myocard), die ritmisch afneemt gedurende het hele leven en bloed door de slagaders en haarvaten naar de weefsels van het lichaam stuurt. Sprekend over de structuur en functies van het menselijke cardiovasculaire systeem, is het vermeldenswaard dat de belangrijkste indicator van het werk van het hart de hoeveelheid bloed is die het in 1 minuut moet pompen. Bij elke samentrekking gooit het hart ongeveer 60-75 ml bloed en in een minuut (met een gemiddelde frequentie van samentrekkingen van 70 per minuut) -4-5 liter, dat wil zeggen 300 liter per uur, 7200 liter per dag.

Afgezien van het feit dat het werk van het hart en de bloedsomloop een stabiele, normale bloedstroom ondersteunt, past dit orgaan zich snel aan en past het zich aan de voortdurend veranderende behoeften van het lichaam aan. Bijvoorbeeld, in een staat van activiteit pompt het hart meer bloed en minder - in een rusttoestand. Wanneer een volwassene in rust is, maakt het hart 60 tot 80 slagen per minuut.

Tijdens inspanning, op het moment van stress of opwinding, kunnen het ritme en de hartslag toenemen tot 200 slagen per minuut. Zonder een systeem van menselijke bloedsomlooporganen is het functioneren van het organisme onmogelijk en is het hart als zijn "motor" een vitaal orgaan.

Wanneer je stopt of abrupt het ritme van hartcontracties verzwakt, gebeurt de dood binnen enkele minuten.

Cardiovasculair systeem van de menselijke bloedsomlooporganen: waar het hart uit bestaat

Dus, waar bestaat iemands hart uit en wat is een hartslag?

De structuur van het menselijk hart omvat verschillende structuren: muren, wanden, kleppen, geleidend systeem en het bloedtoevoersysteem. Het wordt door schotten verdeeld in vier kamers, die niet tegelijkertijd met bloed gevuld zijn. De twee onderste dikwandige kamers in de structuur van het cardiovasculaire systeem van een persoon - de ventrikels - spelen de rol van een injectiepomp. Ze ontvangen bloed uit de bovenste kamers en sturen het naar de slagaders, omdat het gereduceerd is. De contracties van de atria en ventrikels creëren wat de hartslagen worden genoemd.

Contractie van de linker en rechter atria

De twee bovenste kamers zijn de atria. Dit zijn dunwandige tanks, die gemakkelijk kunnen worden uitgerekt, waarbij het bloed in de intervallen tussen de weeën uit de aderen stroomt. De wanden en scheidingswanden vormen de spierbasis van de vier kamers van het hart. De spieren van de kamers bevinden zich op een zodanige manier dat, wanneer ze samentrekken, bloed letterlijk uit het hart wordt geworpen. Stromend veneus bloed komt het rechter atrium van het hart binnen, passeert de tricuspidalisklep in de rechterkamer, vanwaar het de longslagader binnengaat, door zijn halfronde kleppen gaat en vervolgens in de longen. Dus, de rechterkant van het hart ontvangt bloed uit het lichaam en pompt het in de longen.

Het bloed in het cardiovasculaire systeem van het menselijk lichaam dat uit de longen terugkeert, komt het linker atrium van het hart binnen, passeert de bicuspide of mitralisklep en komt het linker ventrikel binnen, van waaruit de aorta semilunaire kleppen in zijn wand worden geduwd. Dus, de linkerkant van het hart ontvangt bloed uit de longen en pompt het in het lichaam.

Het menselijke cardiovasculaire systeem omvat kleppen van het hart en longstam

Kleppen zijn bindvliesplooien die ervoor zorgen dat bloed slechts in één richting kan stromen. Vier hartkleppen (tricuspidalis, pulmonair, bicuspide of mitraal en aorta) vervullen de rol van een 'deur' tussen de kamers, die in één richting opent. Het werk van de hartkleppen draagt ​​bij aan de voortgang van het bloed naar voren en voorkomt dat het in de tegenovergestelde richting beweegt. De tricuspidalisklep bevindt zich tussen het rechter atrium en de rechterventrikel. De naam van deze klep in de anatomie van het menselijk cardiovasculaire systeem spreekt over de structuur ervan. Wanneer deze menselijke hartklep wordt geopend, passeert het bloed van het rechteratrium naar het rechterventrikel. Het voorkomt terugstroming van bloed naar het atrium en sluit tijdens ventriculaire contractie. Wanneer de tricuspidalisklep gesloten is, vindt het bloed in de rechterkamer alleen toegang tot de longstam.

De longstam wordt verdeeld in de linker en rechter longslagaders, die respectievelijk naar de linker en rechter long gaan. De ingang van de longader sluit de pulmonale klep. Dit orgaan van het menselijke cardiovasculaire systeem bestaat uit drie kleppen, die open zijn wanneer de rechterventrikel van het hart wordt verkleind en gesloten op het moment van ontspanning. De anatomische en fysiologische kenmerken van het menselijke cardiovasculaire systeem zijn zodanig dat de pulmonale klep het mogelijk maakt dat bloed van de rechter hartkamer naar de longslagaders stroomt, maar voorkomt een omgekeerde stroom van bloed uit de longslagaders naar de rechter hartkamer.

De werking van de bicuspide hartklep terwijl het atrium en de ventrikels worden verminderd

De bicuspide of mitralisklep regelt de bloedstroom van het linker atrium naar de linker hartkamer. Net als de tricuspidalisklep, sluit deze op het moment van contractie van de linker hartkamer. De aortaklep bestaat uit drie bladeren en sluit de ingang naar de aorta. Deze klep zendt bloed uit de linker hartkamer op het moment van contractie en verhindert de terugstroming van bloed van de aorta naar de linker hartkamer op het moment van ontspanning van de laatste. Gezonde klepblaadjes zijn een dunne, flexibele stof met een perfecte vorm. Ze openen en sluiten wanneer het hart samentrekt of ontspant.

In het geval van een defect (defect) van de kleppen die leiden tot een onvolledige sluiting, treedt een omgekeerde stroom van een bepaalde hoeveelheid bloed door de beschadigde klep met elke spiersamentrekking. Deze defecten kunnen aangeboren of verworven zijn. De meest vatbare voor mitraliskleppen.

De linker en rechter delen van het hart (elk bestaande uit het atrium en de ventrikel) zijn van elkaar geïsoleerd. De juiste sectie ontvangt zuurstofarm bloed dat uit de weefsels van het lichaam stroomt en zendt het naar de longen. De linker sectie ontvangt zuurstofrijk bloed uit de longen en leidt het naar de weefsels van het hele lichaam.

Het linker ventrikel is veel dikker en massiever dan andere kamers van het hart, omdat het het moeilijkste werk doet - bloed wordt in de grote bloedsomloop gepompt: gewoonlijk zijn de wanden iets minder dan 1,5 cm.

Het hart is omgeven door een pericardiale zak (pericardium) met pericardvloeistof. Met deze tas kan het hart vrij krimpen en uitzetten. Het pericardium is sterk, het bestaat uit bindweefsel en heeft een tweelagige structuur. Pericardvloeistof bevindt zich tussen de lagen van het pericardium en maakt het mogelijk als een smeermiddel vrij over elkaar te glijden als het hart uitzet en samentrekt.

Heartbeat-cyclus: fase, ritme en frequentie

Het hart heeft een strikt gedefinieerde sequentie van contractie (systole) en ontspanning (diastole), de hartcyclus genoemd. Aangezien de duur van systole en diastole hetzelfde is, is het hart gedurende een halve cyclus in een ontspannen toestand.

De hartactiviteit wordt bepaald door drie factoren:

  • het hart is inherent aan het vermogen tot spontane ritmische samentrekkingen (het zogenaamde automatisme);
  • de hartslag wordt voornamelijk bepaald door het autonome zenuwstelsel dat het hart innerveert;
  • harmonische contractie van de boezems en ventrikels wordt gecoördineerd door een geleidend systeem dat bestaat uit verschillende zenuw- en spiervezels en zich bevindt in de wanden van het hart.

De vervulling door het hart van de functies van "verzamelen" en pompen van bloed hangt af van het ritme van beweging van kleine impulsen die van de bovenste kamer van het hart naar de lagere komen. Deze impulsen verspreiden zich door het hartgeleidingssysteem, dat de vereiste frequentie, uniformiteit en synchronisme van atriale en ventriculaire contracties instelt in overeenstemming met de behoeften van het lichaam.

De opeenvolging van samentrekkingen van de hartkamers wordt de hartcyclus genoemd. Tijdens de cyclus ondergaat elk van de vier kamers een dergelijke fase van de hartcyclus als contractie (systole) en relaxatiefase (diastole).

De eerste is de samentrekking van de boezems: eerste rechts, bijna onmiddellijk achter hem. Deze snedes zorgen voor een snelle vulling van de ontspannen ventrikels met bloed. Dan krimpen de kamers in elkaar en duwen het bloed erin weg. Op dit moment ontspannen de atria en vullen ze zich met bloed uit de aderen.

Een van de meest karakteristieke kenmerken van het menselijke cardiovasculaire systeem is het vermogen van het hart om regelmatige spontane samentrekkingen te maken die geen extern triggermechanisme zoals nerveuze stimulatie vereisen.

De hartspier wordt aangedreven door elektrische impulsen die in het hart zelf ontstaan. Hun bron is een kleine groep van specifieke spiercellen in de wand van het rechteratrium. Ze vormen een oppervlaktestructuur van ongeveer 15 mm lang, die een sinoatriaal of sinusknooppunt wordt genoemd. Het initieert niet alleen de hartslagen, maar bepaalt ook hun initiële frequentie, die constant blijft in afwezigheid van chemische of nerveuze invloeden. Deze anatomische formatie bestuurt en reguleert het hartritme in overeenstemming met de activiteit van het organisme, de tijd van de dag en vele andere factoren die de persoon beïnvloeden. In de natuurlijke toestand van het ritme van het hart ontstaan ​​elektrische impulsen die door de boezems gaan, waardoor ze samentrekken, naar de atrioventriculaire knoop die zich op de grens tussen de boezems en de kamers bevindt.

Vervolgens verspreidt de excitatie door geleidende weefsels zich in de ventrikels, waardoor ze samentrekken. Daarna rust het hart tot de volgende impuls, van waaruit de nieuwe cyclus begint. De impulsen die optreden in de pacemaker verspreiden zich golvend langs de spierwanden van beide atria, waardoor ze bijna gelijktijdig samentrekken. Deze impulsen kunnen zich alleen door de spieren verspreiden. Daarom is er in het centrale deel van het hart tussen de atria en de ventrikels een spierbundel, het zogenaamde atrioventriculaire geleidingssysteem. Het eerste deel, dat een puls ontvangt, wordt een AV-knooppunt genoemd. Volgens hem verspreidt de impuls zich zeer langzaam, zodat tussen het optreden van de impuls in de sinusknoop en de verspreiding ervan door de ventrikels ongeveer 0,2 seconden duurt. Het is deze vertraging die het mogelijk maakt dat bloed van de boezems naar de ventrikels stroomt, terwijl de laatste nog steeds ontspannen blijven. Vanuit de AV-knoop verspreidt de impuls zich snel over de geleidende vezels die de zogenaamde His-bundel vormen.

De juistheid van het hart, het ritme kan worden gecontroleerd door een hand op het hart te leggen of de hartslag te meten.

Hartprestaties: hartslag en kracht

Hartslag regulatie. Het hart van een volwassene slinkt meestal 60-90 keer per minuut. Bij kinderen is de frequentie en kracht van hartcontracties hoger: bij baby's, ongeveer 120 en bij kinderen onder de 12 jaar - 100 slagen per minuut. Dit zijn slechts gemiddelde indicatoren van het werk van het hart en afhankelijk van de omstandigheden (bijvoorbeeld fysieke of emotionele stress, enz.) Kan de hartslagcyclus zeer snel veranderen.

Het hart wordt overvloedig voorzien van zenuwen die de frequentie van de weeën regelen. De regulatie van hartslagen met sterke emoties, zoals opwinding of angst, wordt versterkt, omdat de stroom van impulsen van de hersenen naar het hart toeneemt.

Een belangrijke rol in het hartspel en fysiologische veranderingen.

Aldus veroorzaakt een toename in de concentratie koolstofdioxide in het bloed, samen met een afname van het zuurstofgehalte, een krachtige stimulatie van het hart.

Overloop met bloed (sterk strekken) van bepaalde delen van het vaatbed heeft het tegenovergestelde effect, wat leidt tot een langzamere hartslag. Lichaamsbeweging verhoogt ook de hartslag tot 200 per minuut of meer. Een aantal factoren beïnvloedt het werk van het hart direct, zonder deelname van het zenuwstelsel. Een toename van de lichaamstemperatuur versnelt bijvoorbeeld de hartslag en een afname vertraagt ​​de hartslag.

Sommige hormonen, zoals adrenaline en thyroxine, hebben ook een direct effect en verhogen de hartslag wanneer ze het hart binnendringen met bloed. Regulering van kracht en hartslag is een zeer complex proces waarbij vele factoren een wisselwerking hebben. Sommigen beïnvloeden het hart direct, anderen handelen indirect via verschillende niveaus van het centrale zenuwstelsel. De hersenen coördineren deze effecten op het werk van het hart met de functionele status van de rest van het systeem.

Hartwerk en bloedsomloop

De menselijke bloedsomloop omvat, naast het hart, een verscheidenheid aan bloedvaten:

  • De vaten zijn een systeem van holle elastische buizen met verschillende structuren, diameters en mechanische eigenschappen gevuld met bloed. Afhankelijk van de richting van de bloedbeweging, zijn de bloedvaten verdeeld in slagaders, waardoor bloed wordt afgevoerd vanuit het hart en naar de organen gaat, en aders zijn bloedvaten waarin het bloed naar het hart stroomt.
  • Tussen de slagaders en aders bevindt zich een microcirculerend bed dat het perifere deel van het cardiovasculaire systeem vormt. Het microcirculatiebed is een systeem van kleine bloedvaten, waaronder arteriolen, capillairen, venulen.
  • Arteriolen en venulen zijn kleine vertakkingen van slagaders en aders. Bij het naderen van het hart gaan de aderen weer samen en vormen ze grotere vaten. Slagaders hebben een grote diameter en dikke elastische wanden die bestand zijn tegen zeer hoge bloeddruk. In tegenstelling tot slagaders, aders hebben dunnere wanden die minder spieren en elastisch weefsel bevatten.
  • De haarvaatjes zijn de kleinste bloedvaten die de arteriolen met de venulen verbinden. Door de zeer dunne wand van de haarvaten worden voedingsstoffen en andere stoffen (zoals zuurstof en koolstofdioxide) uitgewisseld tussen het bloed en de cellen van verschillende weefsels. Afhankelijk van de behoefte aan zuurstof en andere voedingsstoffen, hebben verschillende weefsels verschillende aantallen capillairen.

Weefsels zoals spieren verbruiken grote hoeveelheden zuurstof en hebben daarom een ​​dicht netwerk van haarvaten. Aan de andere kant bevatten weefsels met een langzaam metabolisme (zoals de opperhuid en het hoornvlies) helemaal geen haarvaten. De mens en alle gewervelde dieren hebben een gesloten bloedsomloop.

Het cardiovasculaire systeem van een persoon vormt twee cirkels van de bloedcirculatie die in serie zijn verbonden: groot en klein.

Een grote cirkel van bloedcirculatie zorgt voor bloed naar alle organen en weefsels. Het begint in het linker ventrikel, waar de aorta vandaan komt, en eindigt in het rechter atrium, waar de holle aderen stromen.

De longcirculatie wordt beperkt door de bloedcirculatie in de longen, het bloed wordt verrijkt met zuurstof en koolstofdioxide wordt verwijderd. Het begint met de rechterventrikel, waaruit de longstam tevoorschijn komt, en eindigt met het linker atrium, waarin de longaderen vallen.

Lichamen van het cardiovasculaire systeem van de persoon en de bloedtoevoer naar het hart

Het hart heeft ook zijn eigen bloedtoevoer: speciale aortatakken (kransslagaders) voorzien het van zuurstofrijk bloed.

Hoewel er een enorme hoeveelheid bloed door de kamers van het hart gaat, pakt het hart zelf er niets uit voor zijn eigen voeding. De behoeften van het hart en de bloedsomloop worden geleverd door de kransslagaders, een speciaal systeem van bloedvaten, waardoor de hartspier direct ongeveer 10% van al het bloed dat hij pompt, ontvangt.

De conditie van de kransslagaders is van het allergrootste belang voor de normale werking van het hart en de bloedtoevoer: ze ontwikkelen vaak een proces van geleidelijke vernauwing (stenose), dat, in geval van overbelasting, pijn op de borst veroorzaakt en tot een hartaanval leidt.

Twee kransslagaders, elk met een diameter van 0,3-0,6 cm, zijn de eerste takken van de aorta, die zich ongeveer 1 cm boven de aortaklep uitstrekken.

De linker kransslagader verdeelt zich vrijwel onmiddellijk in twee grote takken, waarvan één (voorste neergaande tak) langs het voorvlak van het hart naar zijn top passeert.

De tweede tak (omhullende) bevindt zich in de groef tussen het linker atrium en de linker ventrikel. Samen met de juiste kransslagader die in de groef ligt tussen het rechter atrium en de rechter hartkamer, buigt deze zich als een kroon rond het hart. Vandaar de naam "coronair".

Van de grote coronaire vaten van het menselijke cardiovasculaire systeem, divergeren kleinere takken en doordringen ze zich in de dikte van de hartspier, en voorzien het van voedingsstoffen en zuurstof.

Met toenemende druk in de kransslagaders en een toename van het werk van het hart, neemt de bloedstroom in de kransslagaders toe. Het gebrek aan zuurstof leidt ook tot een sterke toename van de coronaire bloedstroom.

Bloeddruk wordt gehandhaafd door de ritmische samentrekkingen van het hart, die de rol speelt van een pomp die bloed in de vaten van de grote bloedsomloop pompt. De wanden van sommige vaten (de zogenaamde resistieve vaten - arteriolen en precapillairen) zijn voorzien van spierstructuren die kunnen samentrekken en daardoor het lumen van het vat kunnen verkleinen. Dit creëert weerstand tegen de bloedstroom in het weefsel en het hoopt zich op in de algemene bloedbaan, waardoor de systemische druk toeneemt.

De rol van het hart bij de vorming van de bloeddruk wordt dus bepaald door de hoeveelheid bloed die het per tijdseenheid in de bloedbaan gooit. Dit aantal wordt gedefinieerd door de term "cardiale output" of "minuutvolume van het hart". De rol van resistieve vaten wordt gedefinieerd als totale perifere weerstand, die in hoofdzaak afhangt van de straal van het lumen van de vaten (namelijk arteriolen), dat wil zeggen van de mate van hun versmalling, evenals van de lengte van de vaten en de viscositeit van het bloed.

Naarmate de hoeveelheid bloed die door het hart in de bloedbaan wordt uitgestoten toeneemt, neemt de druk toe. Om een ​​adequaat niveau van bloeddruk te behouden, ontspannen de gladde spieren van resistieve vaten, neemt hun lumen toe (dat wil zeggen, hun totale perifere weerstand neemt af), stroomt bloed naar perifere weefsels en neemt de systemische bloeddruk af. Omgekeerd neemt met een toename van de totale perifere weerstand een minuutvolume af.